SECTION 1

- This section contains **SIX (06)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

: +4 If only (all) the correct option(s) is(are) chosen; Full Marks

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;

Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of

which are correct;

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a

correct option;

Zero Marks : 0 If unanswered; Negative Marks: -2 In all other cases.

For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then

choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 mark;

choosing ONLY (B) will get +1 mark;

choosing ONLY (D) will get +1 mark;

choosing no option(s) (i.e. the question is unanswered) will get 0 marks and

choosing any other option(s) will get -2 marks.

Q.1 Let

$$S_1 = \{(i,j,k) : i,j,k \in \{1,2,...,10\}\},$$

$$S_2 = \{(i,j) : 1 \le i < j + 2 \le 10, i,j \in \{1,2,...,10\}\},$$

$$S_3 = \{(i,j,k,l) : 1 \le i < j < k < l, i,j,k,l \in \{1,2,...,10\}\}$$

and

 $S_4 = \{(i, j, k, l) : i, j, k \text{ and } l \text{ are distinct elements in } \{1, 2, ..., 10\}\}.$

If the total number of elements in the set S_r is n_r , r = 1,2,3,4, then which of the following statements is (are) **TRUE**?

(A)
$$n_1 = 1000$$

(B)
$$n_2 = 44$$

(C)
$$n_3 = 220$$

(B)
$$n_2 = 44$$
 (C) $n_3 = 220$ (D) $\frac{n_4}{12} = 420$

Q.1. PROVISIONAL ANSWER: A, B, D

Q.2 Consider a triangle PQR having sides of lengths p, q and r opposite to the angles P, Q and R, respectively. Then which of the following statements is (are) **TRUE**?

$$(A)\cos P \ge 1 - \frac{p^{-2}}{2qr}$$

(B)
$$\cos R \ge \left(\frac{q-r}{p+q}\right) \cos P + \left(\frac{p-r}{p+q}\right) \cos Q$$

$$(C)\frac{q+r}{p} < 2\,\frac{\sqrt{\sin\,Q\,\sin\,R}}{\sin\,P}$$

(D) If
$$p < q$$
 and $p < r$, then $\cos Q > p$ and $\cos R > p$

Q.2. PROVISIONAL ANSWER: A, B

Q.3 Let $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}$ be a continuous function such that

$$f(0) = 1$$
 and $\int_{0}^{3} f(t) dt = 0$

Then which of the following statements is (are) **TRUE**?

- (A) The equation $f(x) 3 \cos 3x = 0$ has at least one solution in $(0, \frac{\pi}{3})$
- (B) The equation $f(x) 3 \sin 3x = -\frac{6}{\pi}$ has at least one solution in $(0, \frac{\pi}{3})$

(C)
$$\lim_{x\to 0} \frac{x \int_0^x f(t)dt}{1-e^x} = -1$$

(D)
$$\lim_{x\to 0} \frac{\sin x \int_0^x f(t)dt}{x^2} = -1$$

Q.3. PROVISIONAL ANSWER: A, B, C

Q.4 For any real numbers α and β , let $y_{\alpha,\beta}(x)$, $x \in \mathbb{R}$, be the solution of the differential equation

$$\frac{dy}{dx} + \alpha y = xe^{\beta x}, y(1) = 1.$$

Let $S = \{y_{\alpha,\beta}(x) : \alpha, \beta \in \mathbb{R}\}$. Then which of the following functions belong(s) to the set S?

(A)
$$f(x) = \frac{x^2}{2}e^{-x} + (e^{-1})e^{-x}$$

(B)
$$f(x) = -\frac{x^2}{2}e^{-x} + (e + \frac{1}{2})e^{-x}$$

(C)
$$f(x) = \frac{e^x}{2}(x - \frac{1}{2}) + (e - \frac{e}{4})\frac{2}{4}e^{-x}$$

(D)
$$f(x) = \frac{e^x}{2} (\frac{1}{2} - x) + (e + e^x) \frac{e^{-x}}{4}$$

Q.4. PROVISIONAL ANSWER: A, C

- Q.5 Let O be the origin and $\overrightarrow{OA} = 2i + 2j + k$ $\overrightarrow{OB} = i 2j + 2k$ and $\overrightarrow{OC} = 1 (\overrightarrow{OB} \lambda \overrightarrow{OA})$ for some $\lambda > 0$. If $|\overrightarrow{OB} \times \overrightarrow{OC}| = 9$, then which of the following statements is (are) **TRUE**?
 - (A) Projection of $\overrightarrow{O} \longrightarrow \overrightarrow{C}$ on $\overrightarrow{O} \longrightarrow \overrightarrow{A}$ is -3
 - (B) Area of the triangle *OAB* is $\frac{9}{2}$
 - (C) Area of the triangle *ABC* is $\frac{9}{2}$
 - (D) The acute angle between the diagonals of the parallelogram with adjacent sides $\vec{O} \rightarrow \vec{A}$ and $\vec{Q} \rightarrow \vec{C}$ is \vec{A}

Q.5. PROVISIONAL ANSWER: A, B, C

Q.6 Let *E* denote the parabola $y^2 = 8x$. Let P = (-2, 4), and let *Q* and *Q'* be two distinct points on *E* such that the lines PQ and PQ' are tangents to *E*. Let *F* be the focus of *E*. Then which of the following statements is (are) **TRUE**?

- (A) The triangle *PFQ* is a right-angled triangle
- (B) The triangle QPQ' is a right-angled triangle
- (C) The distance between P and F is $5\sqrt{2}$
- (D) F lies on the line joining Q and Q'

Q.6. PROVISIONAL ANSWER: A, B, D

SECTION 2

- This section contains THREE (03) question stems.
- There are **TWO (02)** questions corresponding to each question stem.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numeric keypad.
- If the numerical value has more than two decimal places, **truncate/round-off** the value to **TWO** decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +2 If ONLY the correct numerical value is entered at the designated place;

Zero Marks: 0 In all other cases.

Question Stem for Question Nos. 7 and 8

Question Stem

Consider the region $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x \ge 0 \text{ and } y^2 \le 4 - x\}$. Let \mathscr{F} be the family of all circles that are contained in R and have centers on the x-axis. Let C be the circle that has largest radius among the circles in \mathscr{F} . Let (α, β) be a point where the circle C meets the curve $y^2 = 4 - x$.

O.7 The radius of the circle C is

Q.7. PROVISIONAL RANGE OF ANSWER: [1.49 to 1.51]

 $\hat{Q}.\hat{8}$ The value of α is ____.

Q.8. PROVISIONAL RANGE OF ANSWER: [1.95 to 2.05]

Question Stem for Question Nos. 9 and 10

Question Stem

Let $f_1: (0, \infty) \to \mathbb{R}$ and $f_2: (0, \infty) \to \mathbb{R}$ be defined by

$$f_1(x) = \int_{0}^{x} \prod_{j=1}^{2} (t-j)^j dt, \qquad x > 0$$

and

$$f_2(x) = 98(x-1)^{50} - 600(x-1)^{49} + 2450, \quad x > 0,$$

where, for any positive integer n and real numbers $a_1, a_2, ..., a_n$, $\prod_{i=1}^n a_i$ denotes the product of $a_1, a_2, ..., a_n$. Let m_i and n_i , respectively, denote the number of points of local minima and the number of points of local maxima of function f_i , i = 1, 2, in the interval $(0, \infty)$.

Q.9 The value of $2m_1 + 3n_1 + m_1n_1$ is____.

Q.9. PROVISIONAL RANGE OF ANSWER: [56.90 to 57.10]

Q.10 The value of $6m_2 + 4n_2 + 8m_2n_2$ is___.

Q.10. PROVISIONAL RANGE OF ANSWER: [5.90 to 6.10]

Question Stem for Question Nos. 11 and 12

Question Stem

Let $g_i: [\frac{\pi}{8}, \frac{3\pi}{8}] \to \mathbb{R}$, i = 1, 2, and $f: [\frac{\pi}{8}, \frac{3\pi}{8}] \to \mathbb{R}$ be functions such that

$$g_1(x) = 1$$
, $g_2(x) = |4x - \pi|$ and $f(x) = \sin^2 x$, for all $x \in \begin{bmatrix} \pi & 3\pi \\ 2 & 8 \end{bmatrix}$

Define

$$S_i = \int_{\frac{\pi}{8}} f(x) \cdot g_i(x) \, dx, \qquad i = 1, 2$$

Q.11 The value of $\frac{16S1}{}$ is _____.

Q.11. PROVISIONAL RANGE OF ANSWER: [1.99 to 2.01]

Q.12 The value of $\frac{48S2}{2}$ is ____.

Q.12. PROVISIONAL RANGE OF ANSWER: [1.49 to 1.51]

SECTION 3

- This section contains TWO (02) paragraphs. Based on each paragraph, there are TWO (02) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

: +3 If ONLY the correct option is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : −1 In all other cases.

Paragraph

Let

$$M = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 \le r^2\},\$$

where r > 0. Consider the geometric progression $a_n = \frac{1}{2^{n-1}}$, n = 1, 2, 3, ... Let $S_0 = 0$ and, for $n \ge 1$, let S_n denote the sum of the first n terms of this progression. For $n \ge 1$, let C_n denote the circle with center $(S_{n-1}, 0)$ and radius a_n , and D_n denote the circle with center (S_{n-1}, S_{n-1}) and radius a_n .

Q.13 Consider M with $r = \frac{1025}{513}$. Let k be the number of all those circles C_n that are inside M. Let l be the maximum possible number of circles among these k circles such that no two circles intersect. Then

(C)
$$2k + 3l = 34$$
 (D) $3k + 2l = 40$

(D)
$$3k + 2l = 40$$

Q.14 Consider M with $r = {}^{(2199)}$ The number of all those circles D that are inside Mn

Q.14. PROVISIONAL ANSWER: B

(C) 200

(D) 201

Paragraph

Let $\psi_1: [0, \infty) \to \mathbb{R}$, $\psi_2: [0, \infty) \to \mathbb{R}$, $f: [0, \infty) \to \mathbb{R}$ and $g: [0, \infty) \to \mathbb{R}$ be functions such that f(0) = g(0) = 0,

$$\psi_{1}(x) = e^{-x} + x, \qquad x \ge 0,$$

$$\psi_{2}(x) = x^{2} - 2x - 2e^{-x} + 2, \qquad x \ge 0,$$

$$f(x) = \int_{-x}^{x} (|t| - t^{2})e^{-t^{2}} dt, \qquad x > 0$$

and

$$g(x) = \int_0^x \sqrt{t} e^{-t} dt, \qquad x > 0.$$

Q.15 Which of the following statements is **TRUE**?

(A)
$$f(\sqrt{\ln 3}) + g(\sqrt{\ln 3}) = \frac{1}{3}$$

- (B) For every x > 1, there exists an $\alpha \in (1, x)$ such that $\psi_1(x) = 1 + \alpha x$
- (C) For every x > 0, there exists a $\beta \in (0, x)$ such that $\psi_2(x) = 2x(\psi_1(\beta) 1)$
- (D) f is an increasing function on the interval $[0, \frac{3}{2}]$

Q.15. PROVISIONAL ANSWER: C

- Q.16 Which of the following statements is **TRUE**?
 - (A) $\psi_1(x) \le 1$, for all x > 0
 - (B) $\psi_2(x) \le 0$, for all x > 0
 - (C) $f(x) \ge 1 e^{-x^2} \frac{2}{3}x^{\frac{3}{3}} + \frac{2}{5}x^{\frac{5}{5}}$ for all $x \in (0, \frac{1}{2})$
 - (D) $g(x) \le \frac{2}{3}x^3 \frac{2}{5}x^5 + \frac{1}{5}x^7$, for all $x \in (0, 1)_2^-$

Q.16. PROVISIONAL ANSWER: D

SECTION 4

- This section contains **THREE (03)** questions.
- The answer to each question is a **NON-NEGATIVE INTEGER**.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct integer is entered;

Zero Marks : 0 In all other cases.

Q.17 A number is chosen at random from the set $\{1, 2, 3, ..., 2000\}$. Let p be the probability that the chosen number is a multiple of 3 or a multiple of 7. Then the value of 500p is ____.

Q.17. PROVISIONAL ANSWER: 214

- Q.18 Let *E* be the ellipse x + y = 1. For any three distinct points *P*, *Q* and *Q'* on *E*, let M(P, Q) be the mid-point of the line segment joining *P* and *Q*, and M(P, Q') be the
- Q.18. PROVISIONAL ANSWER: PROVISIONAL ANSWER: PROVISIONAL ANSWER: M(P, Q) and M(P, Q'), as P, Q and Q' vary on E, is __ .
 - Q.19 For any real number x, let [x] denote the largest integer less than or equal to x. If

$$I = \int_{0}^{10} \left[\sqrt{\frac{10x}{x+1}} \right] dx,$$

Q.19. PROVISIONAL ANSWER: 182

then the value of 9*I* is __.

END OF THE QUESTION PAPER

